About c : How-do-I-check-OS-with-a-preprocessor-directive
Question Detail
I need my code to do different things based on the operating system on which it gets compiled. I’m looking for something like this:
#ifdef OSisWindows
// do Windows-specific stuff
#else
// do Unix-specific stuff
#endif
Is there a way to do this? Is there a better way to do the same thing?
Question Answer
The Predefined Macros for OS site has a very complete list of checks. Here are a few of them, with links to where they’re found:
Windows
_WIN32 Both 32 bit and 64 bit
_WIN64 64 bit only
__CYGWIN__
Unix (Linux, *BSD, but not Mac OS X)
See this related question on some of the pitfalls of using this check.
unix
__unix
__unix__
Mac OS X
__APPLE__ Also used for classic
__MACH__
Both are defined; checking for either should work.
Linux
__linux__
linux Obsolete (not POSIX compliant)
__linux Obsolete (not POSIX compliant)
FreeBSD
__FreeBSD__
Android
__ANDROID__
……………………………………………………
show GCC defines on Windows:
gcc -dM -E –
/**
* Determination a platform of an operation system
* Fully supported supported only GNU GCC/G++, partially on Clang/LLVM
*/
#if defined(_WIN32)
#define PLATFORM_NAME “windows” // Windows
#elif defined(_WIN64)
#define PLATFORM_NAME “windows” // Windows
#elif defined(__CYGWIN__) && !defined(_WIN32)
#define PLATFORM_NAME “windows” // Windows (Cygwin POSIX under Microsoft Window)
#elif defined(__ANDROID__)
#define PLATFORM_NAME “android” // Android (implies Linux, so it must come first)
#elif defined(__linux__)
#define PLATFORM_NAME “linux” // Debian, Ubuntu, Gentoo, Fedora, openSUSE, RedHat, Centos and other
#elif defined(__unix__) || !defined(__APPLE__) && defined(__MACH__)
#include
#if defined(BSD)
#define PLATFORM_NAME “bsd” // FreeBSD, NetBSD, OpenBSD, DragonFly BSD
#endif
#elif defined(__hpux)
#define PLATFORM_NAME “hp-ux” // HP-UX
#elif defined(_AIX)
#define PLATFORM_NAME “aix” // IBM AIX
#elif defined(__APPLE__) && defined(__MACH__) // Apple OSX and iOS (Darwin)
#include
#if TARGET_IPHONE_SIMULATOR == 1
#define PLATFORM_NAME “ios” // Apple iOS
#elif TARGET_OS_IPHONE == 1
#define PLATFORM_NAME “ios” // Apple iOS
#elif TARGET_OS_MAC == 1
#define PLATFORM_NAME “osx” // Apple OSX
#endif
#elif defined(__sun) && defined(__SVR4)
#define PLATFORM_NAME “solaris” // Oracle Solaris, Open Indiana
#else
#define PLATFORM_NAME NULL
#endif
// Return a name of platform, if determined, otherwise – an empty string
const char *get_platform_name() {
return (PLATFORM_NAME == NULL) ? “” : PLATFORM_NAME;
}
int main(int argc, char *argv[]) {
puts(get_platform_name());
return 0;
}
Tested with GCC and clang on:
Debian 8
Windows (MinGW)
Windows (Cygwin)
……………………………………………………
In most cases it is better to check whether a given functionality is present or not. For example: if the function pipe() exists or not.
……………………………………………………
#ifdef _WIN32
// do something for windows like include
#elif defined __unix__
// do something for unix like include
#elif defined __APPLE__
// do something for mac
#endif
……………………………………………………
Microsoft C/C++ compiler (MSVC) Predefined Macros can be found here
I think you are looking for:
_WIN32 – Defined as 1 when the compilation target is 32-bit ARM, 64-bit ARM, x86, or x64. Otherwise, undefined
_WIN64 – Defined as 1 when the compilation target is 64-bit ARM or x64. Otherwise, undefined.
gcc compiler PreDefined MAcros can be found here
I think you are looking for:
__GNUC__
__GNUC_MINOR__
__GNUC_PATCHLEVEL__
Do a google for your appropriate compilers pre-defined.
……………………………………………………
On MinGW, the _WIN32 define check isn’t working. Here’s a solution:
#if defined(_WIN32) || defined(__CYGWIN__)
// Windows (x86 or x64)
// …
#elif defined(__linux__)
// Linux
// …
#elif defined(__APPLE__) && defined(__MACH__)
// Mac OS
// …
#elif defined(unix) || defined(__unix__) || defined(__unix)
// Unix like OS
// …
#else
#error Unknown environment!
#endif
For more information please look: https://sourceforge.net/p/predef/wiki/OperatingSystems/
……………………………………………………
There is no standard macro that is set according to C standard. Some C compilers will set one on some platforms (e.g. Apple’s patched GCC sets a macro to indicate that it is compiling on an Apple system and for the Darwin platform). Your platform and/or your C compiler might set something as well, but there is no general way.
Like hayalci said, it’s best to have these macros set in your build process somehow. It is easy to define a macro with most compilers without modifying the code. You can simply pass -D MACRO to GCC, i.e.
gcc -D Windows
gcc -D UNIX
And in your code:
#if defined(Windows)
// do some cool Windows stuff
#elif defined(UNIX)
// do some cool Unix stuff
#else
# error Unsupported operating system
#endif
……………………………………………………
You can use Boost.Predef which contains various predefined macros for the target platform including the OS (BOOST_OS_*). Yes boost is often thought as a C++ library, but this one is a preprocessor header that works with C as well!
This library defines a set of compiler, architecture, operating system, library, and other version numbers from the information it can gather of C, C++, Objective C, and Objective C++ predefined macros or those defined in generally available headers. The idea for this library grew out of a proposal to extend the Boost Config library to provide more, and consistent, information than the feature definitions it supports. What follows is an edited version of that brief proposal.
For example
#include
#if defined(BOOST_OS_WINDOWS)
#elif defined(BOOST_OS_ANDROID)
#elif defined(BOOST_OS_LINUX)
#elif defined(BOOST_OS_BSD)
#elif defined(BOOST_OS_AIX)
#elif defined(BOOST_OS_HAIKU)
…
#endif
The full list can be found in BOOST_OS operating system macros
See also How to get platform ids from boost
……………………………………………………
Sorry for the external reference, but I think it is suited to your question:
C/C++ tip: How to detect the operating system type using compiler predefined macros
……………………………………………………
Use #define OSsymbol and #ifdef OSsymbol
where OSsymbol is a #define’able symbol identifying your target OS.
Typically you would include a central header file defining the selected OS symbol and use OS-specific include and library directories to compile and build.
You did not specify your development environment, but I’m pretty sure your compiler provides global defines for common platforms and OSes.
See also http://en.wikibooks.org/wiki/C_Programming/Preprocessor
……………………………………………………
Just to sum it all up, here are a bunch of helpful links.
GCC Common Predefined Macros
SourceForge predefined Operating Systems
MSDN Predefined Macros
The Much-Linked NaudeaSoftware Page
Wikipedia!!!
SourceForge’s “Overview of pre-defined compiler macros for standards, compilers, operating systems, and hardware architectures.”
FreeBSD’s “Differentiating Operating Systems”
All kinds of predefined macros
libportable
……………………………………………………
I did not find Haiku definition here. To be complete, Haiku-os definition is simple __HAIKU__
……………………………………………………
Some compilers will generate #defines that can help you with this. Read the compiler documentation to determine what they are. MSVC defines one that’s __WIN32__, GCC has some you can see with touch foo.h; gcc -dM foo.h
……………………………………………………
You can use pre-processor directives as warning or error to check at compile time you don’t need to run this program at all just simply compile it .
#if defined(_WIN32) || defined(_WIN64) || defined(__WINDOWS__)
#error Windows_OS
#elif defined(__linux__)
#error Linux_OS
#elif defined(__APPLE__) && defined(__MACH__)
#error Mach_OS
#elif defined(unix) || defined(__unix__) || defined(__unix)
#error Unix_OS
#else
#error Unknown_OS
#endif
#include
int main(void)
{
return 0;
}
……………………………………………………
I wrote an small library to get the operating system you are on, it can be installed using clib (The C package manager), so it is really simple to use it as a dependency for your projects.
Install
$ clib install abranhe/os.c
Usage
#include
#include “os.h”
int main()
{
printf(“%s\n”, operating_system());
// macOS
return 0;
}
It returns a string (char*) with the name of the operating system you are using, for further information about this project check it out the documentation on Github.